
CV29 Explained
By Scott Kurzawski

Before going on to the actual programming of CV29, let’s go over the structure of
CV29, since it has an entirely different meaning than all the other CVs we’ve
encountered thus far. First, let’s clarify that CV29 is same for all decoder
manufacturers. It is part of the NMRA DCC decoder specification. Every CV is
made up of a group of 8-bits. Think of a bit as a single-pole single-throw toggle
switch, which has only two states. These states are either ON or OFF. In the
case of all the previous CVs, we didn’t really care about the individual bits since
we are just programming up a single numeric value, such as a loco’s address.
However, in the case of CV29, each bit has a unique meaning. Here is a listing
of the bit meanings:

• Bit 0 ON [1] = Direction of operation is reversed
OFF [0] = Direction of operation is normal

• Bit 1 ON [1] = 28 Speed Step Mode (should always be enabled)
• Bit 2 ON [1] = Analog mode operation enabled

OFF [0] = Analog mode disabled
• Bit 4 ON [1] = Alternate Speed Curve Active

OFF [0] = Use table defined by CV 2, 5 and 6
• Bit 5 ON [1] = Use long address in CV17/18

OFF [0] = Use short address defined in CV1
• Bits 3, 6 and 7 are ignored by the DCC system firmware.

Now to transfer the state of all of the individual bits as a single numeric value is
where the confusing part comes into play. What is required is a little binary
mathematics to calculate the final numeric value but even that is pretty easy once
you know how to do it. First, start by reading a bit string from right to left. As
you move to each successive bit to the left, you will notice that the bit value
doubles from the previous bit value.

Here’s a table that defines each bit value:

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit Value 128 64 32 16 8 4 2 1

Now to figure out the numeric equivalent for bits that are ON, just add ONLY the
respective values for the bits that are enabled [ON]. For example, if you wish to
enable bits 1, 2 and 5, e.g. enable 28 speed step mode, analog operation and
use long address, then to get the equivalent decimal value you would add 0 + 0 +
32 + 0 + 0 + 4 + 2 + 0 = 38. As you can see when the bits are OFF, just place a
zero in the formula for that bit. Therefore, in this example, CV29 would have a
value of 38 programmed into it. Now the folks at NCE and System One made it
easy for us by making each bit that we need to worry about in CV29 a Yes [<1>]
or No [<Enter>] question, and so we just answer the questions in the SET CFG
section and they take care of doing the binary math for us in the DCC system
firmware.

Before going on to the actual programming of CV29, let’s go over the structure
of CV29, since it has an entirely different meaning than all the other
conventional CVs found on a standard mobile decoder. First, let’s clarify that
CV29 is same for all decoder manufacturers. It is part of the NMRA DCC
decoder specification. Every CV is made up of a group of 8-bits. Think of a
bit as a single-pole single-throw toggle switch, which has only two states.
These states are either ON or OFF. In the case of conventional CVs, we
didn’t really care about the individual bits since we are just programming up a
single numeric value, such as a loco’s address. However, in the case of
CV29, each bit has a unique meaning. Here is a listing of the bit meanings:

• Bit 0 ON [1] = Direction of operation is reversed
OFF [0] = Direction of operation is normal

• Bit 1 ON [1] = 28 Speed Step Mode (should always be enabled)
• Bit 2 ON [1] = Analog mode operation enabled

OFF [0] = Analog mode disabled
• Bit 4 ON [1] = Alternate Speed Curve Active

OFF [0] = Use table defined by CV 2, 5 and 6
• Bit 5 ON [1] = Use long address in CV17/18

OFF [0] = Use short address defined in CV1
• Bits 3, 6 and 7 are ignored by the DCC system firmware.

Now to transfer the state of all of the individual bits as a single numeric value
is where the confusing part comes into play. What is required is a little binary
mathematics to calculate the final numeric value but even that is pretty easy
once you know how to do it. First, start by reading a bit string from right to
left. As you move to each successive bit to the left, you will notice that the bit
value doubles from the previous bit value.

Here’s a table that defines each bit value:

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit Value 128 64 32 16 8 4 2 1

Now to figure out the numeric equivalent for bits that are ON, just add ONLY
the respective values for the bits that are enabled [ON]. For example, if you
wish to enable bits 1, 2 and 5, e.g. enable 28 speed step mode, analog
operation and use long address, then to get the equivalent decimal value you
would add 0 + 0 + 32 + 0 + 0 + 4 + 2 + 0 = 38. As you can see when the bits
are OFF, just place a zero in the formula for that bit. Therefore, in this
example, CV29 would have a value of 38 programmed into it. Now the folks
at NCE and System One made it easy for us by making each bit that we need
to worry about in CV29 a Yes [<1>] or No [<Enter>] question, and so we just
answer the questions in the SET CFG section and they take care of doing the
binary math for us in the DCC system firmware.

